Influence of posterior dental arch length on brain activity during chewing in patients with mandibular distal extension removable partial dentures

    loading  Checking for direct PDF access through Ovid

Abstract

It is well known that shortened dental arch decreases masticatory function. However, its potential to change brain activity during mastication is unknown. The present study investigates the effect of a shortened posterior dental arch with mandibular removable partial dentures (RPDs) on brain activity during gum chewing. Eleven subjects with missing mandibular molars (mean age, 66·1 years) on both sides received experimental RPDs with interchangeable artificial molars in a crossover trial design. Brain activity during gum chewing with RPDs containing (full dental arch) and lacking artificial molars (shortened dental arch) was measured using functional magnetic resonance imaging. Additionally, masticatory function was evaluated for each dental arch type. Food comminuting and mixing ability and the perceived chewing ability were significantly lower in subjects with a shortened dental arch than those with a full dental arch (P< 0·05). Brain activation during gum chewing with the full dental arch occurred in the middle frontal gyrus, primary sensorimotor cortex extending to the pre-central gyrus, supplementary motor area, putamen, insula and cerebellum. However, middle frontal gyrus activation was not observed during gum chewing with the shortened dental arch. These results suggest that shortened dental arch affects human brain activity in the middle frontal gyrus during gum chewing, and the decreased middle frontal gyrus activation may be associated with decreased masticatory function.

Related Topics

    loading  Loading Related Articles