Effects of fiber length and orientation on elasticity of fiber-reinforced plywood

    loading  Checking for direct PDF access through Ovid


Short carbon fibers, a reinforced material in wood veneer composites, were used to investigate the effects of fiber length and orientation of fibers on the elasticity of plywood. The technical feasibility, elasticity, and strength of the reinforced plywood with short carbon fiber were evaluated. In a short fiber reinforcement system, the fiber length does not directly influence the reinforcement in Cox's theory when the fiber length exceeded a certain length. When the length of short carbon fiber is beyond 3 mm, the high reinforced result was obtained in the experiment. However, if fiber length was too long, the reinforced result was less owing to the bridge between fibers and the increase of holes. The optimum fiber length must be considered. The orientation of fibers has a strong influence on the reinforcement. Unidirectional, perpendicular, and random orientation displayed different influence on the elasticity. Experimental results were discussed with Cox's method. Reinforced plywood with short carbon fibers in random orientation has a higher shear modulus and bending strength than the controls, in addition to other mechanical properties.

Related Topics

    loading  Loading Related Articles