Quantitative analysis of binary polymorphs mixtures of fusidic acid by diffuse reflectance FTIR spectroscopy, diffuse reflectance FT-NIR spectroscopy, Raman spectroscopy and multivariate calibration


    loading  Checking for direct PDF access through Ovid

Abstract

Vibrational spectroscopic techniques such as infrared, near-infrared and Raman spectroscopy have become popular in detecting and quantifying polymorphism of pharmaceutics since they are fast and non-destructive. This study assessed the ability of three vibrational spectroscopy combined with multivariate analysis to quantify a low-content undesired polymorph within a binary polymorphic mixture. Partial least squares (PLS) regression and support vector machine (SVM) regression were employed to build quantitative models. Fusidic acid, a steroidal antibiotic, was used as the model compound. It was found that PLS regression performed slightly better than SVM regression in all the three spectroscopic techniques. Root mean square errors of prediction (RMSEP) were ranging from 0.48% to 1.17% for diffuse reflectance FTIR spectroscopy and 1.60–1.93% for diffuse reflectance FT-NIR spectroscopy and 1.62–2.31% for Raman spectroscopy. The results indicate that diffuse reflectance FTIR spectroscopy offers significant advantages in providing accurate measurement of polymorphic content in the fusidic acid binary mixtures, while Raman spectroscopy is the least accurate technique for quantitative analysis of polymorphs.HighlightsThree vibrational spectroscopy were used to quantify a low-content undesired polymorph within a binary polymorphic mixture.Multivariate regressions techniques including PLS regression and SVM regression were employed for data analysis.The data were split into two combinations of training and test sets to investigate the robustness of the methods.

    loading  Loading Related Articles