Urinary metabonomics study of the hepatoprotective effects of total alkaloids fromCorydalis saxicolaBunting on carbon tetrachloride-induced chronic hepatotoxicity in rats using 1H NMR analysis


    loading  Checking for direct PDF access through Ovid

Abstract

Chronic liver injury has been shown to cause liver fibrosis due to the sustained pathophysiological wound healing response of the liver, and eventually progresses to cirrhosis. The total alkaloids of Corydalis saxicola Bunting (TACS), a collection of important bioactive ingredients derived from the traditional Chinese folk medicine Corydalis saxicola Bunting (CS), have been reported to have protective effects on the liver. However, the underlying molecular mechanisms need further elucidation. In this study, the urinary metabonomics and the biochemical changes in rats with carbon tetrachloride (CCl4)-induced chronic liver injury due to treatment TACS or administration of the positive control drug-bifendate were studied via proton nuclear magnetic resonance (1H NMR) analysis. Partial least squares-discriminate analysis (PLS-DA) suggested that metabolic perturbation caused by CCl4 damage was recovered with TACS and bifendate treatment. A total of seven metabolites including 2-oxoglutarate, citrate, dimethylamine, taurine, phenylacetylglycine, creatinine and hippurate were considered as potential biomarkers involved in the development of CCl4-induced chronic liver injury. According to pathway analysis using identified metabolites and correlation network construction, the tricarboxylic acid (TCA) cycle, gut microbiota metabolism and taurine and hypotaurine metabolism were recognized as the most affected metabolic pathways associated with CCl4 chronic hepatotoxicity. Notably, the changes in 2-oxoglutarate, citrate, taurine and hippurate during the process of CCl4-induced chronic liver injury were significantly restored by TACS treatment, which suggested that TACS synergistically mediated the regulation of multiple metabolic pathways including the TCA cycle, gut microbiota metabolism and taurine and hypotaurine metabolism. This study could bring valuable insight to evaluating the efficacy of TACS intervention therapy, help deepen the understanding of the hepatoprotective mechanisms of TACS and enable optimal diagnosis of chronic liver injury.Graphical abstractHighlightsHepatoprotective effect of total alkaloids of Corydalis saxicola Bunting (TACS) was characterized by metabonomic approach.7 Metabolites were considered as potential biomarkers concerning CCl4-induced chronic liver injury.Tricarboxylic acid cycle, gut microbiota metabolism, and taurine and hypotaurine metabolism were most affected.TACS mediated synergistically disturbance of the metabolic pathways in CCl4-induced chronic liver injury.

    loading  Loading Related Articles