Compositional Limitations in Poly–3–Hydroxyalkanoates Produced by Pseudomonas oleovorans

    loading  Checking for direct PDF access through Ovid


It is well known that Pseudomonas oleovorans can utilize sodium octanoate for both cell growth and the synthesis of polyhydroxyalkanoates (PHAs), but it can utilize sodium butyrate only for limited cell growth and not for the polyester formation when this substrate is the sole carbon source. Therefore, these two substrates were evaluated as cofeeds for the possible incorporation of 3-hydroxybutyryl groups in the resulting PHA. When sodium butyrate and sodium octanoate were fed to P. oleovorans as cosubstrates in various proportions, the resultant cell density and polymer content were proportional to the amount of sodium octanoate in the feed. The PHA extracted from cells grown in all combinations of these cosubstrates had similar unit compositions of approximately 8 mole % 3-hydroxyhexanoate, 91 mole % 3-hydroxyoctanoate and 1 mole % 3-hydroxydecanoate. 3-Hydroxybutyrate units were not detected in any of the PHAs isolated, indicating that these units could not be incorporated in the copolymer synthesized by P. oleovorans either because the cell did not synthesize that monomer or, if it did, the PHA synthase could not copolymerize it with the longer chain monomers.

Related Topics

    loading  Loading Related Articles