The Incidence Peaks of the Childhood Acute Leukemias Reflect Specific Cytogenetic Aberrations

    loading  Checking for direct PDF access through Ovid


The correlation between age and karyotype was studied in 1425, 0 to 14.9 years old children who were diagnosed with acute lymphoblastic leukemia (ALL) or acute myeloblastic leukemia. Almost 80% of the non-Down B-cell precursor ALL cases in the 2 to 7 years frequency peak group who had aberrant cytogenetic results had either a high-hyperdiploid clone (51 to 61 chromosomes) or a translocation t(12;21)(p13;q22). Among B-cell precursor ALL cases, high white blood cell counts correlated with earlier age at diagnosis (rS=−0.23; P<0.001) being most evident for 11q23/MLL-aberrations, translocation t(12;21)(p13;q22), and high-hyperdiploidy. Among acute myeloblastic leukemia patients, frequency peaks were found for those with MLL/11q23 rearrangements (peak: first year), Down syndrome (peak: second to third year), or cytogenetic abnormalities other than translocations t(8;21), t(15;17), and inv(16)/t(16;16) (peak: first to third year). The epidemiology of the cytogenetic subsets of acute leukemias questions whether age as a disease-related prognostic parameter has any relevance in childhood leukemia clinical research beyond being a surrogate marker for more important, truly biologic features such as cytogenetic aberrations and white cell count at diagnosis. Further research is needed to explore whether the 2 to 7 years age incidence peak in childhood ALL harbor yet unidentified cytogenetic subsets with the same natural history as the high-hyperdiploid and t(12;21)-positive leukemias.

Related Topics

    loading  Loading Related Articles