Exercise-induced changes in tumour LDH-B and MCT1 expression are modulated by oestrogen-related receptor alpha in breast cancer-bearing BALB/c mice

    loading  Checking for direct PDF access through Ovid


Several factors, including overexpression of lactate dehydrogenase (LDH) and monocarboxylate transporters (MCTs), promote an aerobic lactate production that allows some cancer cells to sustain higher proliferation rates in hostile environments outside the cell. To elucidate the effect of endurance training on the metabolic phenotype of solid tumours, we focused on the tumour expression of LDH-A, LDH-B, MCT1, MCT4, oestrogen-related receptor alpha (ERRα) and LDH isozymes in control (C), trained (T), control+XCT790 (CX) and trained+XCT790 (TX) mice. First, we found that the metabolically altered tumours from the trained animals exhibited lower values for lactate concentration than the control group. The decreased lactate concentration was associated with a shift in the tumour LDH isozyme profile towards LDH-1. These exercise-induced changes were also associated with decreases in the expression of the tumour MCT1, ERRα and CD147 in the trained animals. Secondly, the inhibition of ERRα by treatment of MC4-L2 human breast cancer cells with XCT790 (inverse agonist ligand of ERRα) before injection into the animals not only increased LDH-B expression in the tumour, but also decreased MCT1 expression in the CX group in comparison to the C group. The effects of ERRα inhibition were not additive to the training effects on the expressions of MCT1 and LDH-B in the solid tumours. In conclusion, our results suggest that exercise-induced suppression of ERRα expression modulates alterations in solid tumour expression of LDH-B and MCT1 and contributes towards the prevention of tumour development.

Related Topics

    loading  Loading Related Articles