Mechanisms of 5-HT1A receptor-mediated transmission in dorsal raphe serotonin neurons

    loading  Checking for direct PDF access through Ovid

Abstract

In the dorsal raphe nucleus (DRN), feedback activation by Gαi/o-coupled 5-HT1A autoreceptors reduces the excitability of serotoninergic neurons, which decreases serotonin release both locally within the DRN and in projection regions. Serotonin transmission within the DRN is thought to occur via transmitter spillover and paracrine activation of extrasynaptic receptors. Here, we tested the volume transmission hypothesis in mouse DRN brain slices by recording 5-HT1A receptor-mediated inhibitory postsynaptic currents (5-HT1A-IPSCs) generated by the activation of G-protein-coupled inwardly rectifying potassium channels (GIRKs). We found that in the DRN of ePET1-EYFP mice, which selectively express enhanced yellow fluorescent protein in serontonergic neurons, the local release of serotonin generated 5-HT1A-IPSCs in serotonin neurons that rose and fell within a second. The transient activation of 5-HT1A autoreceptors resulted in brief pauses in neuron firing that did not alter the overall firing rate. The duration of 5-HT1A-IPSCs was primarily shaped by receptor deactivation due to clearance via serotonin reuptake transporters. Slowing diffusion with dextran prolonged the rise and reduced the amplitude the IPSCs and the effects were potentiated when uptake was inhibited. By examining the decay kinetics of IPSCs, we found that while spillover may allow for the activation of extrasynaptic receptors, efficient uptake by serotonin reuptake transporters (SERTs) prevented the pooling of serotonin from prolonging the duration of transmission when multiple inputs were active. Together the results suggest that the activation of 5-HT1A receptors in the DRN results from the local release of serotonin rather than the extended diffusion throughout the extracellular space.

Related Topics

    loading  Loading Related Articles