Protein kinase C-dependent regulation of ClC-1 channels in active human muscle and its effect on fast and slow gating

    loading  Checking for direct PDF access through Ovid

Abstract

Repeated firing of action potentials (APs) is known to trigger rapid, protein kinase C (PKC)-dependent inhibition of ClC-1 Cl− ion channels in rodent muscle and this inhibition is important for contractile endurance. It is currently unknown whether similar regulation exists in human muscle, and the molecular mechanisms underlying PKC-dependent ClC-1 inhibition are unclear. This study first determined whether PKC-dependent ClC-1 inhibition exists in active human muscle, and second, it clarified how PKC alters the gating of human ClC-1 expressed in Xenopus oocytes. In human abdominal and intercostal muscles, repeated AP firing was associated with 30–60% reduction of ClC-1 function, which could be completely prevented by PKC inhibition (1 μm GF109203X). The role of the PKC-dependent ClC-1 inhibition was evaluated from rheobase currents before and after firing 1000 APs: while rheobase current was well maintained after activity under control conditions it rose dramatically if PKC-dependent ClC-1 inhibition had been prevented with the inhibitor. This demonstrates that the ClC-1 inhibition is important for maintenance of excitability in active human muscle fibres. Oocyte experiments showed that PKC activation lowered the overall open probability of ClC-1 in the voltage range relevant for AP initiation in muscle fibres. More detailed analysis of this reduction showed that PKC mostly affected the slow gate of ClC-1. Indeed, there was no effect of PKC activation in C277S mutated ClC-1 in which the slow gate is effectively locked open. It is concluded that regulation of excitability of active human muscle fibres relies on PKC-dependent ClC-1 inhibition via a gating mechanism.

Related Topics

    loading  Loading Related Articles