Effect of melatonin and diazepam on the dissociated circadian rhythm in rats

    loading  Checking for direct PDF access through Ovid


The main structures involved in the circadian system in mammals are the suprachiasmatic nuclei (SCN) of the hypothalamus. The SCN contain multiple autonomous single-cell circadian oscillators that are coupled among themselves, generating a single rhythm. However, under determined circumstances, the oscillators may uncouple and generate several rhythmic patterns. Rats exposed to an artificially established 22-h light–dark cycle (T22) express two stable circadian rhythms in their motor activity that reflect the separate activities of two groups of oscillators in the morphologically well-defined ventrolateral and dorsomedial SCN subdivisions. In the experiments described in this paper, we studied the effect of melatonin and diazepam (DZP) administration in drinking water on the dissociated components of rat motor activity exposed to T22, to deduce the possible mechanism of these drugs on the circadian system. In order to suppress the endogenous circadian rhythm of melatonin, in some of the rats the pineal gland or the superior cervical ganglia were removed. The results show that melatonin or DZP treatment increased the manifestation of the light-dependent component to the detriment of the manifestation of the non-light-dependent component and that melatonin, but not DZP, shortens the period of the non-light-dependent component. These findings suggest that both DZP and melatonin favor entrainment to external light, and that melatonin could also act on the SCN, producing changes in the period of the circadian cycle.

Related Topics

    loading  Loading Related Articles