Explosive Push-ups: From Popular Simple Exercises to Valid Tests for Upper-Body Power

    loading  Checking for direct PDF access through Ovid

Abstract

Zalleg, D, Ben Dhahbi, A, Dhahbi, W, Sellami, M, Padulo, J, Souaifi, M, Bešlija, T, and Chamari, K. Explosive push-ups: From popular simple exercises to valid tests for upper-body power. J Strength Cond Res XX(X): 000–000, 2018—The purpose of this study was to assess the logical and ecological validity of 5 explosive push-up variations as a means of upper-body power assessment, using the factorial characterization of ground reaction force-based (GRF-based) parameter outputs. Thirty-seven highly active commando soldiers (age: 23.3 ± 1.5 years; body mass: 78.7 ± 9.7 kg; body height: 179.7 ± 4.3 cm) performed 3 trials of 5 variations of the explosive push-up in a randomized-counterbalanced order: (a) standard countermovement push-up, (b) standard squat push-up, (c) kneeling countermovement push-up, (d) kneeling squat push-up, and (e) drop-fall push-up. Vertical GRF was measured during these exercises using a portable force plate. The initial force-supported, peak-GRF and rate of force development during takeoff, flight time, impact force, and rate of force development impact on landing were measured. A significant relationship between initial force-supported and peak-GRF takeoff was observed for the countermovement push-up (CMP) exercises (standard countermovement push-up, kneeling countermovement push-up, and drop-fall push-up) and squat push-up (SP) exercises (standard squat push-up and kneeling squat push-up) (r = 0.58 and r = 0.80, respectively; p < 0.01). Furthermore, initial force supported was also negatively correlated to a significant degree with flight time for both CMP and SP (r = −0.74 and r = −0.80; p < 0.01, respectively). Principal component analysis (PCA) showed that the abovementioned 6 GRF-based variables resulted in the extraction of 3 significant components, which explained 88.9% of the total variance for CMP, and 2 significant components, which explained 71.0% of the total variance for SP exercises. In summary, the PCA model demonstrated a great predictive power in accounting for GRF-based parameters of explosive push-up exercises, allowing for stronger logical and ecological validity as tests of upper-body power. Furthermore, it is possible to adjust the intensity level of the push-up exercise by altering the starting position (i.e., standard vs. kneeling).

Related Topics

    loading  Loading Related Articles