Maximal Upper Body Strength and Oxygen Uptake are Associated with Performance in High-Level 200-M Sprint Kayakers

    loading  Checking for direct PDF access through Ovid


Current training and monitoring methods in sprint kayaking are based on the premise that upper-body muscular strength and aerobic power are both important for performance, but limited evidence exists to support this premise in high-level athletes. Relationships between measures of strength, maximal oxygen uptake (VO2max) and 200-m race times in kayakers competing at national-to-international levels were examined. Data collected from Australian Canoeing training camps and competitions for 7 elite, 7 national and 8 club level male sprint kayakers were analyzed for relationships between maximal isoinertial strength (3-RM bench press, bench row, chin-up and deadlift), VO2max on a kayak ergometer, and 200-m race time. Correlations between race time and bench press, bench row, chin-up, and VO2max were -0.80, -0.76, -0.73, -0.02 and 0.71, respectively (90% confidence limits ∼±0.17). The multiple correlation coefficient for 200-m race time with bench press and VO2max was 0.84. Errors in prediction of 200-m race time in regression analyses were extremely large (∼4%) in relation to the smallest important change of 0.3%. However, from the slopes of the regressions, the smallest important change could be achieved with a 1.4% (±0.5%) change in bench-press strength and a 0.9% (±0.5%) change in VO2max. Substantial relationships were found between upper-body strength or aerobic power and 200-m performances. These measures may not accurately predict individual performance times, but would be practicable for talent identification purposes. Training aimed at improving upper-body strength or aerobic power in lowerperforming athletes could also enhance the performance in 200-m kayak sprints.

Related Topics

    loading  Loading Related Articles