Anatomic Determination of Optimal Entry Point and Direction For C1 Lateral Mass Screw Placement

    loading  Checking for direct PDF access through Ovid

Abstract

Study Design

Anatomic study of C1 osteology using computerized tomography.

Objectives

To define the anatomy of the C1 lateral mass and make recommendations for optimal entry point and screw placement at C1.

Summary of Background Data

C1 lateral mass screw fixation is a reliable biomechanical technique that gives equivalent stability to that of Magerl transarticular screw fixation combined with posterior wiring for C1-C2 fusion. Use of a lateral mass screw allows alternative stabilization constructs to the transarticular technique when C2 vertebral artery anatomy is unfavorable. Because the vertebral artery travels lateral to the lateral mass, then crosses medially over the C1 neural arch, it is at risk during instrumentation. Medially, the cord and canal contents are at risk. While the anatomy of the C1 vertebra and lateral mass is well known, specific definition of ideal entry points, screw pathway direction, and dimensions of screws requires further clarification to enable a clinically safe surgical technique.

Methods

Fifty consecutive patients underwent computerized tomography scans of their cervical spine. Using calibrated scans, measurements were taken to give the average dimensions of the C1 vertebra with a view for insertion of lateral mass screws beneath the posterior arch. The range of anatomic dimensions was examined to assess risk of vertebral artery damage in this population.

Results

The average length of screw within the lateral mass is 17.9 mm with 21.5 mm of screw posterior to the lateral mass, necessary to allow rod placement posteriorly. The safest entry point was directly beneath the medial edge of the posterior arch/lamina where it joins the lateral mass. The ideal direction of screw angulation in the sagittal plane was parallel to the posterior arch of C1. In the medial lateral plane, direct anterior placement could be used, but the lateral mass will tolerate 20 degrees of medial angulation from this starting point. The average distance between the vertebral artery foramen laterally and the screw pathway was 8.8 mm using these landmarks, and 5.8 mm from the medial aspect of the lateral mass. The range of anatomic variation was such that 9 lateral masses had a vertebral artery foramen to screw distance of only 3 mm. The vertebral artery was not at risk when these anatomic landmarks were used.

Conclusions

C1 lateral mass screws are best placed beneath the posterior arch, parallel with the arch in the sagittal plan. The entry point is the medial border of the neural arch at its junction with the lateral mass. Straight ahead screw direction is safe in the axial plane, but up to 20 degrees of medial angulation will increase the safety margin from the vertebral artery foramen, and this technique avoids vertebral artery damage and optimizes lateral mass screw purchase. We suggest that this is the preferred method of entry into the lateral mass of C1.

Related Topics

    loading  Loading Related Articles