Transesophageal versus transcranial motor evoked potentials to monitor spinal cord ischemia

    loading  Checking for direct PDF access through Ovid

Abstract

Objectives:

We have previously reported that transesophageal motor evoked potential is feasible and more stable than transcranial motor evoked potential. This study aimed to investigate the efficacy of transesophageal motor evoked potential to monitor spinal cord ischemia.

Methods:

Transesophageal and transcranial motor evoked potentials were recorded in 13 anesthetized dogs at the bilateral forelimbs, anal sphincters, and hindlimbs. Spinal cord ischemia was induced by aortic balloon occlusion at the 8th to 10th thoracic vertebra level. In the 12 animals with motor evoked potential disappearance, occlusion was maintained for 10 minutes (n = 6) or 40 minutes (n = 6) after motor evoked potential disappearance. Neurologic function was evaluated by Tarlov score at 24 and 48 hours postoperatively.

Results:

Time to disappearance of bilateral motor evoked potentials was quicker in transesophageal motor evoked potentials than in transcranial motor evoked potentials at anal sphincters (6.9 ± 3.1 minutes vs 8.3 ± 3.4 minutes, P = .02) and hindlimbs (5.7 ± 1.9 minutes vs 7.1 ± 2.7 minutes, P = .008). Hindlimb function was normal in all dogs in the 10-minute occlusion group, and motor evoked potentials recovery (>75% on both sides) after reperfusion was quicker in transesophageal motor evoked potentials than transcranial motor evoked potentials at hindlimbs (14.8 ± 5.6 minutes vs 24.7 ± 8.2 minutes, P = .001). At anal sphincters, transesophageal motor evoked potentials always reappeared (>25%), but transcranial motor evoked potentials did not in 3 of 6 dogs. In the 40-minute occlusion group, hindlimb motor evoked potentials did not reappear in 4 dogs with paraplegia. Among the 2 remaining dogs, 1 with paraparesis (Tarlov 3) showed delayed recovery (>75%) of hindlimb motor evoked potentials without reappearance of anal sphincter motor evoked potentials. In another dog with spastic paraplegia, transesophageal motor evoked potentials from the hindlimbs remained less than 20%, whereas transcranial motor evoked potentials showed recovery (>75%).

Conclusions:

Transesophageal motor evoked potentials may be superior to transcranial motor evoked potentials in terms of quicker response to spinal cord ischemia and better prognostic value.

Related Topics

    loading  Loading Related Articles