On a Class of Hungarian Semigroups and the Factorization Theorem of Khinchin

    loading  Checking for direct PDF access through Ovid


Let G be a connected reductive Lie group and K be a maximal compact subgroup of G. We prove that the semigroup of all K-biinvariant probability measures on G is a strongly stable Hungarian semigroup. Combining with the result [see Rusza and Szekely(9)], we get that the factorization theorem of Khinchin holds for the aforementioned semigroup. We also prove that certain subsemigroups of K-biinvariant measures on G are Hungarian semigroups when G is a connected Lie group such that Ad G is almost algebraic and K is a maximal compact subgroup of G. We also prove a p-adic analogue of these results.

Related Topics

    loading  Loading Related Articles