Role of TGFBR1 and TGFBR2 genetic variants in Marfan syndrome

    loading  Checking for direct PDF access through Ovid


Objective:Genetic variants in transforming growth factor beta (TGF-β) receptors type 1 (TGFBR1) and type 2 (TGFBR2) genes have been associated with different hereditary connective tissue disorders sharing thoracic aortic aneurysm and dissection (TAA/D). Mutations in both TGFBR1/2 genes have been described in patients with TAA/D and Marfan syndrome (MFS), and they are associated consistently with Loeys-Dietz syndrome. The existing literature shows discordant data resulting from mutational screening of TGFBR1/2 genes in patients with MFS. The aim of the study was to investigate the role of TGFBR1/2 genetic variants in determining and/or modulating MFS clinical phenotype.Methods:We investigated 75 unrelated patients with MFS referred to the Center for Marfan Syndrome and Related Disorders (Careggi University Hospital, Florence) who were subjected to FBN1 and TGFBR1/2 Sanger mutational screening.Results:Forty-seven patients with MFS (63%) carried a pathogenetic FBN1 mutation. No pathogenetic mutations were detected in TGFBR1/2 genes. Ten common polymorphisms were identified in TGFBR2 and 6 in TGFBR1. Their association with cardiovascular manifestations was evaluated. Carriers of the A allele of rs11466512, delA allele of c.383delA or delT allele of c.1256-15del1T polymorphisms had a trend toward or significantly reduced z-scores (median [interquartile range (IQR)], 2.2 [1.13-4.77]; 2.1 [1.72-3.48]; 2.5 [1.85-3.86]) with respect to homozygous patients with wild-type MFS (median [IQR], 4.20 [2.39-7.25]; 3.9 [2.19-7.00]; 3.9 [2.14-6.93]). Carriers of the A allele of the rs2276767 polymorphism showed a trend toward increased z-score (median [IQR], 4.9 [2.14-7.16]) with respect to patients with wild-type MFS (median [IQR], 3.3 [1.75-5.45]). The protective effect of TGFBR1/2 genetic score including all the 4 variants was also evaluated. Patients with MFS with two or more protective alleles included in the score had statistically significant reduced aortic z-scores (median [IQR], 2.20 [1.48-3.37]) with respect to patients with 1 or no protective alleles (median [IQR], 4.20 [2.48-7.12]; P = .007). Patients with severe aortic manifestations (aortic z-score ≥ 2 or aortic surgery) showed a significantly lower prevalence of subjects with two or more protective alleles included in the genetic score (29.7%) than patients with no or milder cardiovascular involvement (63.6%; P = .029). The genetic score protective effect on global aortic manifestations severity (aortic z-score ≥ 2 or aortic surgery) was also observed at the logistic regression analysis adjusted for the presence of FBN1 gene mutations (odds ratio, 0.21; 95% CI, 0.05-0.84; P = .028).Conclusions:In conclusion, our data reappraise the role of TGFBR1 and TGFBR2 as major genes in patients with MFS, and suggest that TGFBR1/2 genetic variants (in particular when evaluated as a burden by score) might play a role in modulating the severity of cardiovascular manifestation in MFS.Clinical Relevance:Our article provides a useful contribution in defining the role of TGFBR1 and TGFBR2 genes in Marfan syndrome, because inconclusive results from literature concerning their association with this disorder are still present. Our data do not support the role of mutations in TGFBR1 and TGFBR2 genes as major determinants of MFS phenotype; nevertheless, they suggest a role of these genes as modulator of cardiovascular manifestations' severity in patients with Marfan syndrome, thus underlining the importance of the deep understanding of the genetic background in monogenic syndromic disorders.

    loading  Loading Related Articles