Efficacy of a dual fluorescence method in detecting the viability of overwintering cyanobacteria

    loading  Checking for direct PDF access through Ovid

Abstract

Chill in the light is the major environmental stress that cyanobacteria encounter in winter. Cyanobacterial cells may acquire chill-light tolerance upon exposure to low temperature in autumn and early winter. We sought to establish the efficacy of the dual fluorescence method in detecting the viability of overwintering cyanobacteria and to provide further evidence for the chill-light tolerance of preconditioned cyanobacteria. Synechocystis sp. PCC 6803 and Microcystis aeruginosa PCC 7806 were exposed to chill (5°C)-light stress with or without pretreatment at 15°C and stained with SYTO 9 and propidium iodide. Live and dead cells were observed under a fluorescence microscope, and the percentage of viable cells was quantified on a microplate reader. The dual fluorescence method showed consistent results with tests of the ability to reinitiate growth. Cell viability was quantitatively correlated with ratio of SYTO 9/propidium iodide fluorescence. Previously, Microcystis colonies in Lake Taihu had been found to accumulate RNA-binding protein 1 in autumn and winter. Use of this method directly showed the viability of such Microcystis colonies throughout the winter.

Significance and Impact of the Study

This study established the efficacy of the dual fluorescence method in evaluating the viability of cyanobacteria under chill-light stress. The results provided the direct evidence for acquired chill-light tolerance and the viability of overwintering Microcystis colonies. Such information can be useful in prediction of cyanobacterial blooms.

Related Topics

    loading  Loading Related Articles