Simultaneous nitrification and denitrification using an autotrophic membrane-immobilized biofilm reactor

    loading  Checking for direct PDF access through Ovid


AimsTo develop a laboratory-scale autotrophic membrane-immobilized biofilm reactor to remove nitrogen from drinking water.Methods and ResultsA polyvinyl alcohol (PVA) immobilized biofilm, attached to the surface of a silicone tube, was used as the basis of a bioreactor for simultaneous nitrification and denitrification of water. The bioreactor was aerated with air to supply oxygen for nitrification. Pure hydrogen was supplied to the silicone tube and diffused through the membrane wall to feed the biofilm for autotrophic denitrification. The bioreactor was effective for the simultaneous nitrification and denitrification of water after a short period of acclimation, while the biofilm exhibited good resistance to the inhibition of denitrification by dissolved oxygen; the denitrification rate decreased by only 8% as the dissolved oxygen increased from 2 mg l−1 to saturation.ConclusionsBy using PVA crosslinked with sodium nitrate to entrap nitrifying and denitrifying sludge on the surface of a silicone tube, a novel bioreactor for simultaneous nitrification and denitrification was developed. In addition to performing as an immobilizing agent to strengthen the biofilm, PVA protected the denitrifying microorganisms to reduce the inhibition by dissolved oxygen under aerobic condition. Therefore, nitrification and denitrification occurred simultaneously within the biofilm. Furthermore, the immobilization technique shortened the acclimation period of the bioreactor.Significance and Impact of the StudyThe described space saving and simple to operate bioreactor for nitrogen removal performed autotrophic denitrification to solve the problem of residual carbon in heterotrophic denitrification, and thus is suitable for removing nitrogen from drinking water.

    loading  Loading Related Articles