Activation of the capsaicin-receptor TRPV1 by the acetaminophen metaboliteN-arachidonoylaminophenol results in cytotoxicity

    loading  Checking for direct PDF access through Ovid


Aims:The anandamide reuptake inhibitor N-arachidonoylaminophenol (AM404) and the reactive substance N-acetyl-p-benzoquinone imine (NAPQI) are both metabolites of acetaminophen and may contribute to acetaminophen-induced analgesia by acting at TRPV1 expressed in the peripheral or central nervous system. While NAPQI slowly sensitizes and activates TRPV1 by interacting with distinct intracellular cysteine residues, detailed properties of AM404 as an agonist of TRPV1 have not yet been reported on. We explored the effects of AM404 on recombinant human TRPV1 and in rodent dorsal root ganglion (DRG) neurons.Materials and methods:HEK 293 cells expressing different isoforms of recombinant TRPV1 and rodent DRG neurons were employed for patch clamp and calcium imaging experiments. Cytotoxicity was assessed by propidium iodide and Annexin V staining on TRPV1-HEK 293 cells and with trypan blue staining on DRG neurons.Key findings:AM404 activates hTRPV1 at concentrations >1 μM and in a concentration-dependent manner. AM404 also potentiates TRPV1-mediated currents evoked by heat and anandamide. Moreover, AM404-evoked currents are potentiated by NAPQI. While the partly capsaicin-insensitive rabbit (o) TRPV1 fails to respond to AM404, AM404-sensitivity is restored by insertion of the capsaicin binding-domain of rat TRPV1 into oTRPV1. In DRG neurons, AM404-evoked calcium influx as well as cell death is mediated by TRPV1.Significance:AM404 gates TRPV1 by interacting with the vanilloid-binding site, and TRPV1 is the main receptor for AM404 in DRG neurons. While direct activation of TRPV1 requires high concentrations of AM404, it is possible that synergistic effects of AM404 with further TRPV1-agonists may occur at clinically relevant concentrations.

    loading  Loading Related Articles