Antibiotic-induced dysbiosis effects on the murine gastrointestinal tract and their systemic repercussions

    loading  Checking for direct PDF access through Ovid


The gastrointestinal tract has become a focus of study recently. The crosstalk between microbiota, especially bacteria, and the intestinal mucosa has to be accurately balanced in order to maintain physiological homeostasis in the human body. This dynamic interaction results in different levels of short-chain fatty acids (SCFAs), IgA, and T cell lymphocyte subsets, which could lead the human body towards health or disease. The disruption of this microbiome characterises gut dysbiosis. Antibiotics are usually prescribed to fight against bacterial infection. They can also modulate the human microbiome, since it acts directly over organisational taxonomic units (OTUs) when taken orally. As a result, these pharmaceuticals enable gut dysbiosis and its systemic effects due to microbiome disturbance. Here, current data have been gathered from mice model experiments and epidemiological studies in an antibiotic-centred perspective. The presented data suggest the importance of translational studies in a murine model focusing on GIT homeostasis with bacterial groups since any changes to the GIT-microbiota have systemic repercussions in human health and disease.

    loading  Loading Related Articles