Intracellular retention of hepatic serpins caused by severe hyperlipidemia

    loading  Checking for direct PDF access through Ovid

Abstract

Background

High levels of circulating lipids contribute to both the development of non-alcoholic liver steatosis (NALS) and peripheral arterial disease, leading to increased thrombotic risk. However, the effects of hyperlipidemia on hepatic proteins have barely been studied. Antithrombin is a hepatic serpin with anticoagulant and anti-inflammatory roles. The conformational flexibility of antithrombin renders it susceptible to both, genetic and posttranslational modifications. Thus, mutations and environmental factors have been shown to alter this molecule.

Methods

We used a chick model to assess the effects of hyperlipidemic diets (HD) on this conformationally sensitive molecule. We determined antithrombin activity in plasma and evaluated the histological and immunohistological features of livers from these animals.

Results

A HD for 6 months led to a significant intrahepatic retention and aggregation of antithrombin, which correlated with hepatic steatosis, as revealed by immunohistological analysis. Accordingly, a decrease in circulating antithrombin activity (48.71 ± 6.35%) was observed. Other hepatic proteins, including heparin cofactor II, another anticoagulant serpin, also accumulated intracellularly. Atorvastatin and reversion to a normal diet after 3 months partially protected livers from these deleterious effects.

Conclusions

Our results support that hyperlipidemia-induced NALS causes a significant intracellular aggregation of hemostatic serpins in liver, which determines a decrease in their circulating levels.

Related Topics

    loading  Loading Related Articles