Quantization of the Space of Conformal Blocks

    loading  Checking for direct PDF access through Ovid

Abstract

We consider the discrete Knizhnik–Zamolodchikov connection (qKZ) associated to gl(N), defined in terms of rational R-matrices. We prove that under certain resonance conditions, the qKZ connection has a non-trivial invariant subbundle which we call the subbundle of quantized conformal blocks. The subbundle is given explicitly by algebraic equations in terms of the Yangian Y(gl(N)) action. The subbundle is a deformation of the subbundle of conformal blocks in CFT. The proof is based on an identity in the algebra with two generators x,y and defining relation xy=yx+yy.

Related Topics

    loading  Loading Related Articles