Quantization of the Space of Conformal Blocks

    loading  Checking for direct PDF access through Ovid


We consider the discrete Knizhnik–Zamolodchikov connection (qKZ) associated to gl(N), defined in terms of rational R-matrices. We prove that under certain resonance conditions, the qKZ connection has a non-trivial invariant subbundle which we call the subbundle of quantized conformal blocks. The subbundle is given explicitly by algebraic equations in terms of the Yangian Y(gl(N)) action. The subbundle is a deformation of the subbundle of conformal blocks in CFT. The proof is based on an identity in the algebra with two generators x,y and defining relation xy=yx+yy.

Related Topics

    loading  Loading Related Articles