Generalized Kähler Geometry from Supersymmetric Sigma Models

    loading  Checking for direct PDF access through Ovid

Abstract

We give a physical derivation of generalized Kähler geometry. Starting from a supersymmetric nonlinear sigma model, we rederive and explain the results of Gualtieri (Generalized complex geometry, DPhil thesis, Oxford University, 2004) regarding the equivalence between generalized Kähler geometry and the bi-hermitean geometry of Gates et al. (Nucl Phys B248:157, 1984). When cast in the language of supersymmetric sigma models, this relation maps precisely to that between the Lagrangian and the Hamiltonian formalisms. We also discuss topological twist in this context.

Related Topics

    loading  Loading Related Articles