The human natural killer cytotoxic cell line NK-92, once armed with a murine CD16 receptor, represents a convenient cellular tool for the screening of mouse mAbs according to their ADCC potential

    loading  Checking for direct PDF access through Ovid

Abstract

To take advantage of the large number of well-characterized mouse immunoglobulins (IgGs) for the study of antibody-dependent cell-mediated cytotoxicity (ADCC) in human cells, we armed human cytotoxic lymphocytes with a mouse receptor for the Fc portion of IgG antibodies. The human NK-92 natural killer cell line was transduced with a mouse receptor gene (mCD16), which was stably expressed on the cell surface (referred to as NK-92mCD16). When tested against a B-lymphoblastoid cell line (BLCL) coated with mouse anti-CD20 IgG1, IgG2a or IgG2b monoclonal antibodies (mAbs), the newly expressed mouse Fc receptor enabled the NK-92mCD16 cells to kill the BLCL by ADCC. Next, using the NK-92mCD16 we compared mouse mAbs directed at B lineage specific CD antigens for their ability to induce ADCC against human Epstein-Barr virus- infected B lymphoblastoid (for anti-CD19, -CD20 and -CD21) or against myeloma (for anti-CD38 and -CD138) target cells. Our results demonstrated that the “NK-92mCD16 assay” allows convenient and sensitive discrimination of mouse mAbs for their ability to mediate ADCC in a human cellular system. In addition, our results provide examples of dissociation between opsonization and target cell killing through ADCC. These “murinized” human effector cells thus represent a convenient cellular tool for the study of ADCC.

Related Topics

    loading  Loading Related Articles