Comparison of three physiologically-based pharmacokinetic models for the prediction of contrast agent distribution measured by dynamic MR imaging

    loading  Checking for direct PDF access through Ovid


PurposeTo compare the performance of three physiologically-based pharmacokinetic (PBPK) models for predicting gadolinium contrast agent concentration-time curves (Gd-CTCs) obtained in superior sagittal sinus (SSS), cerebral cortex, and psoas muscle.Materials and MethodsThree published whole-body PBPK models were modified to predict Gd-CTCs in normal-appearing tissue. The models differed in the number of organs modeled and total number of compartments, and were designated as the “well-mixed,” “delay,” and “dispersion” models. The suitability of the three models to predict Gd-CTC was studied using data from dynamic contrast-enhanced MR perfusion imaging obtained at 1.5T from 10 patients with glioblastoma multiforme and at 3.0T from five patients with liver metastases.ResultsThe dispersion model produced better fits than the delay model in the SSS (P < 0.0001) and cerebral cortex (P < 0.0001), and better fits than the well-mixed model in psoas muscle (P < 0.005). No model produced better fits than the dispersion model at any of the three locations.ConclusionIn this evaluation, the dispersion model was most robust for prediction of Gd-CTCs derived from dynamic contrast-enhanced (DCE)-MRI. This represents a preliminary step in the development of a PBPK model useful for predicting Gd-CTCs at a time resolution appropriate for dynamic MRI applications. J. Magn. Reson. Imaging 2008;27:1388–1398. © 2008 Wiley-Liss, Inc.

    loading  Loading Related Articles