MR tracking of transplanted cells with “positive contrast” using manganese oxide nanoparticles


    loading  Checking for direct PDF access through Ovid

Abstract

Rat glioma cells were labeled using electroporation with either manganese oxide (MnO) or superparamagnetic iron oxide (SPIO) nanoparticles. The viability and proliferation of SPIO-labeled cells (1.9 mg Fe/ml) or cells electroporated with a low dose of MnO (100 μg Mn/ml) was not significantly different from unlabeled cells; a higher MnO dose (785 μg Mn/ml) was found to be toxic. The cellular ion content was 0.1–0.3 pg Mn/cell and 4.4 pg Fe/cell, respectively, with cellular relaxivities of 2.5–4.8 s−1 (R1) and 45–84 s−1 (R2) for MnO-labeled cells. Labeled cells (SPIO and low-dose MnO) were each transplanted in contralateral brain hemispheres of rats and imaged in vivo at 9.4T. While SPIO-labeled cells produced a strong “negative contrast” due to the increase inR2, MnO-labeled cells produced “positive contrast” with an increasedR1. Simultaneous imaging of both transplants with opposite contrast offers a method for MR “double labeling” of different cell populations. Magn Reson Med 60:1–7, 2008. © 2008 Wiley-Liss, Inc.

    loading  Loading Related Articles