Concept Formation During Interactive Theory Revision

    loading  Checking for direct PDF access through Ovid


This article examines the problem of concept formation in machine learning, and focuses in particular on the problem of aggregation, i.e., the decision of which objects are to be grouped together into a new concept. While existing concept formation approaches have mainly concentrated on aggregation constraints that rely on structural or correlational properties of the concepts themselves, we argue that in an integrated learning system, other learning activities can provide an additional context that focuses concept formation before structural criteria are applied. In particular, we present the concept formation method realized by the KRT and CLT components of the integrated learning system MOBAL. In MOBAL, a concept formation attempt is triggered whenever no existing concept can adequately capture the rule instance and exception sets as they arise from the theory revision activities of the system. We describe how the so-proposed aggregate is characterized by a set of (function-free) first-order Horn clauses and how these are evaluated according to structural criteria to decide about the introduction of the concept into the representation. We show how a structural criterion can be used to ensure that any new concept improves the structure of the knowledge base, and we empirically evaluate how the introduction of new concepts according to different criteria affects the classification accuracy of learned rules.

Related Topics

    loading  Loading Related Articles