Alopecia and male infertility in oligotriche mutant mice are caused by a deletion on distal chromosome 9

    loading  Checking for direct PDF access through Ovid


The recessive mutation oligotriche (olt) affects the coat and male fertility in the mouse. In homozygous (olt/olt) mutants, the coat is sparse, most notably in the inguinal and medial femoral region. In these regions, almost all hair shafts are bent and distorted in their course through the dermis and rarely penetrate the epidermis because the hair cortex is not fully keratinized. During hair follicle morphogenesis, mutant hair follicles exit from anagen one day before those of normal littermates and show a prolongation of the catagen stage. The oligotriche (olt) locus was mapped to distal chromosome 9 within a 5-Mbp interval distal to D9Mit279. Analysis of candidate gene expression revealed that olt/olt mutant mice do not express functional phospholipase C delta 1 (Plcd1) mRNA. This deficiency is the consequence of a 234-kbp deletion involving not only the Plcd1 locus but also the chromosomal segment harboring the genes Vill (villin-like), Dlec1 (deleted in lung and esophageal cancer 1), Acaa1b (acetyl-Coenzyme A acyltransferase 1B, synonym thiolase B), and parts of the genes Ctdspl (carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase-like) and Slc22a14 (solute carrier family 22 member 14). Offspring of olt/olt females, mated with Plcd1-/- knockout males, exhibit coat defects similar to those observed in homozygous olt/olt mutant mice but the spermiogenesis in male offspring is normal. We conclude that the 234-kbp deletion from chromosome 9 harbors a gene involved in spermiogenesis and we propose that the oligotriche mutant be used as a model for the study of the putative tumor suppressor genes Dlec1, Ctdspl, and Vill. We also suggest that the oligotriche locus be named Del(9Ctdspl-Slc22a14)1Pas.

Related Topics

    loading  Loading Related Articles