Minimal Decomposition of Model-Based Invariants

    loading  Checking for direct PDF access through Ovid


Model-based invariants are relations between model parameters and image measurements, which are independent of the imaging parameters. Such relations are true for all images of the model. Here we describe an algorithm which, given L independent model-based polynomial invariants describing some shape, will provide a linear reparameterization of the invariants. This reparameterization has the properties that: (i) it includes the minimal number of terms, and (ii) the shape terms are the same in all the model-based invariants. This final representation has 2 main applications: (1) it gives new representations of shape in terms of hyperplanes, which are convenient for object recognition; (2) it allows the design of new linear shape from motion algorithms. In addition, we use this representation to identify object classes that have universal invariants.

    loading  Loading Related Articles