Validation of Diagnostic Groups Based on Health Care Utilization Data Should Adjust for Sampling Strategy

    loading  Checking for direct PDF access through Ovid


Objective:Valid measurement of outcomes such as disease prevalence using health care utilization data is fundamental to the implementation of a “learning health system.” Definitions of such outcomes can be complex, based on multiple diagnostic codes. The literature on validating such data demonstrates a lack of awareness of the need for a stratified sampling design and corresponding statistical methods. We propose a method for validating the measurement of diagnostic groups that have: (1) different prevalences of diagnostic codes within the group; and (2) low prevalence.Methods:We describe an estimation method whereby: (1) low-prevalence diagnostic codes are oversampled, and the positive predictive value (PPV) of the diagnostic group is estimated as a weighted average of the PPV of each diagnostic code; and (2) claims that fall within a low-prevalence diagnostic group are oversampled relative to claims that are not, and bias-adjusted estimators of sensitivity and specificity are generated.Application:We illustrate our proposed method using an example from population health surveillance in which diagnostic groups are applied to physician claims to identify cases of acute respiratory illness.Conclusions:Failure to account for the prevalence of each diagnostic code within a diagnostic group leads to the underestimation of the PPV, because low-prevalence diagnostic codes are more likely to be false positives. Failure to adjust for oversampling of claims that fall within the low-prevalence diagnostic group relative to those that do not leads to the overestimation of sensitivity and underestimation of specificity.

    loading  Loading Related Articles