Dexamethasone induced alterations in enzymatic and nonenzymatic antioxidant status in heart and kidney of rats

    loading  Checking for direct PDF access through Ovid

Abstract

This study was designed to investigate the alterations in thiobarbituric acid reactants (TBA-reactants) and enzymatic and nonenzymatic antioxidant levels induced by dexamethasone (Dex) in heart and kidney and to find out whether these alterations induced by Dex and its hypertensive effect had any role in the maintenance of hypertension in this model. Administration of dexamethasone induced severe loss of body weight, significant increase in heart and kidney weights and also marked electrocardiographic changes. The protein content in heart and kidney increased significantly during Dex administration and returned to near normalcy after withdrawal. Total activity of lactate dehydrogenase showed a significant increase in heart till day 8 of treatment, whereas in serum, it exhibited a significant decrease. The activity of CK in heart showed an increase till day 8 of treatment and approached normalcy thereafter. In serum, CK exhibited a decrease till day 8, remaining insignificant thereafter. CKMB in heart showed an insignificant increase initially, reaching normal levels on Dex withdrawal, whereas in serum, it showed a significant decrease throughout the experimental period. Mean arterial pressure (MAP) and heart rate increased significantly, while a significant elevation in the ST segment was noticed during administration as well as after withdrawal of dex. The TBA-reactants levels were found to increase in heart and kidney during days 12 and 16 of administration with Dex and even after withdrawal of Dex, the levels were insignificantly elevated. The level of glutathione in heart and kidney increased from day 4 onwards and reached normalcy during the later stages of treatment and after withdrawal of Dex. The total sulfhydryl groups exhibited a significant increase in both heart and kidney throughout the experiment. The antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase and glutathione S-transferase exhibited a significant decrease in heart during Dex administration whereas, in kidney, they exhibited a significant increase during treatment and after withdrawal of Dex. Thus, Dex induced rise in mean arterial pressure, significant alterations in electrocardiographic parameters and also marked alterations in enzymatic and nonenzymatic antioxidant levels and in the TBA-reactants level in heart and kidney.

Related Topics

    loading  Loading Related Articles