Mimosa pudica apyrase requires polysaccharide and Ca2+ for the activity

    loading  Checking for direct PDF access through Ovid


Mimosa pudica Linn leaves with pulvini contain unique isoforms (I and II) of apyrase enzyme (EC The activity of isoform I depends on divalent cation Mn2+. This isoform is associated noncovalently with the polysaccharide, containing mainly of galactose and arabinose sugars. The apparent molecular mass of these 2 isoforms are 36 and 34 Kd respectively. The association of the polysaccharide with the isoform I has been found to be Ca2+ dependent which is endogenously present in this isoform. Removal of Ca2+ and polysaccharide from the enzyme (isoform I) leads to an inactivation. The enzyme activity can be restored when both Ca2+ and endogenous polysaccharide fraction were added at an optimal molar ratio of Ca2+:protein of 7:1. The endogenous polysaccharide can be replaced by the standard arabinogalactan. No other sugar or polysaccharide except the arabinogalactan can restore the apyrase activity. Calcium mediates a conformational change in the protein which helps in association of polysaccharide as evidenced from fluorometric and far UV-CD studies to restore the enzymic activity. Neither any interaction of the polysaccharide with the protein is detected in absence of Ca2+ nor the enzyme activity could be recovered under such condition.

Related Topics

    loading  Loading Related Articles