Picroliv - a natural product protects cells and regulates the gene expression during hypoxia/reoxygenation

    loading  Checking for direct PDF access through Ovid


Cellular adaptation to hypoxia involves regulation of specific genes such as vascular endothelial growth factor (VEGF), erythropoietin (EPO) and hypoxia inducible factor (HIF)-1. In this study, we have evaluated the protective effect of picroliv (a purified iridoid glycoside fraction from roots of Picrorhiza kurrooa with hepatoprotective, anti-inflammatory and antioxidant properties) against hypoxic injury by examining lactate dehydrogenase (LDH) release in Hep 3B and Glioma cells. The expression of hypoxia regulated genes, VEGF and HIF-1 was studied in human umbilical vein endothelial cells (HUVEC), Hep 3B and Glioma cells. Picroliv reduced the cellular damage caused by hypoxia as revealed by a significant reduction in LDH release compared to untreated control. The expression of VEGF and HIF-1 subunits (HIF-1α and HIF-1β) was enhanced by treatment with picroliv during normoxia and hypoxia in HUVEC and Hep 3B cells and on reoxygenation the expression of these genes was significantly reduced as revealed by mRNA analysis using RT-PCR. Simultaneous treatment with picroliv during hypoxia inhibited VEGF and HIF-1 expression in Glioma cells whereas the expression was not reduced by picroliv treatment during reoxygenation as evidenced by both RT-PCR and Northern hybridization. VEGF expression as revealed by immunofluorescence studies correlates well with the regulations observed in the MRNA expression. We have also examined the kinase activity of tyrosine phosphorylated proteins and protein kinase C (PKC) in Glioma cells treated with picroliv during hypoxia/reoxygenation. A selective inhibition of protein tyrosine kinase activity leading to tyrosine dephosphorylation of several proteins including 80 kd protein, and a reduction in PKC was seen in cells treated with picroliv and hypoxia. These findings suggest that picroliv may act as a protective agent against hypoxia/reoxygenation induced injuries, and the underlying mechanism may involve a novel signal transduction pathway.

Related Topics

    loading  Loading Related Articles