Micellar oleic and eicosapentaenoic acid but not linoleic acid influences the β-carotene uptake and its cleavage into retinol in rats

    loading  Checking for direct PDF access through Ovid

Abstract

Improving the bioavailability of β-carotene is vital to manage vitamin A deficiency. The influence of micellar oleic (OA), linoleic (LA) and eicosapentaenoic (EPA) acids on plasma β-carotene response and its conversion to retinol has been studied in rats employing single (9 h time course) and repeated (10 days) dose administrations. After a single dose, the levels (area under the curve) of plasma β-carotene and retinyl palmitate in OA and EPA groups were higher (p < 0.05) by 13, 7 and 11, 6 folds than LA group. The liver β-carotene level in OA and EPA groups were higher (p < 0.05) by 3 and 1.2 folds than LA group. After repeated dose, the plasma β-carotene and retinyl palmitate levels in OA (6.2%, 51.7%) and EPA (25.4%, 17.23%) groups were higher (p < 0.05) than LA group. The liver β-carotene level in OA (21.2%) and EPA (17.6%) groups were higher (p < 0.05) than LA group. In both the experiments, the activity of β-carotene 15,15′-dioxygenase in the intestinal mucosa and plasma triglyceride levels were also higher in OA and EPA groups than LA group. β-Carotene excreted through urine and feces of OA and EPA groups was lower than the LA group. These results demonstrate an improved absorption and metabolism of β-carotene when fed mixed micelles with OA or EPA compared with LA. Although the mechanism involved in selective absorption of fatty acids needs further studies, intestinal β-carotene uptake and its conversion to vitamin A can be modulated using specific fatty acids.

Related Topics

    loading  Loading Related Articles