Efficacy of DL-α lipoic acid against systemic inflammation-induced mice: antioxidant defense system

    loading  Checking for direct PDF access through Ovid


Inflammation can activate macrophages or monocytes and sequentially release several inflammatory cytokines and reactive oxygen species (ROS). Oxidative stress-induced acute inflammatory response plays an important role in several diseases. This study was designed to investigate the prophylactic effect of the antioxidant lipoic acid (LA) during inflammation-induced mice. Mice were divided in to three groups (n = 8 in each): control, systemic inflammation, and LA treated mice with systemic inflammation. Results show that ROS was significantly higher in lymphocytes, hepatocytes, and astrocytes (P < 0.05) of inflammation induced mice when compared with control but no significant changes were observed in the LA treated group. Increased levels of lipid peroxidation (LPO) and decreased activities of oxidants such as superoxide dismutase (SOD), catalase, glutathione peroxidase, glutathione, and ATPase were observed in the inflammation-induced mice, which returned to near normalcy following LA therapy. In vitro study has shown that LA treatment not only suppresses the increased LPO levels but also inhibits the lipid break down resulting from autoxidation. In addition, increased immunoreactivity of the astrocyte marker glial fibrillary acidic protein (GFAP) was observed in the neocortex region of inflammation-induced mice, whereas nuclear factor kappa B p65 (NFκB) immunoreactivity was observed in both the neocortex and liver of the same group which were effectively controlled by LA therapy suggesting that LA can efficiently manage systemic inflammation.

Related Topics

    loading  Loading Related Articles