Inter- and Intradigit Somatotopic Map of High-Frequency Vibration Stimulations in Human Primary Somatosensory Cortex

    loading  Checking for direct PDF access through Ovid

Abstract

Although more about the somatotopic mapping of fingers continues to be uncovered, there is lack of mapping attempts regarding the integration of within-finger and across-finger somatotopic coordinates in Broadmann area (BA) 3. This study aimed to address the issue by finding an inter-/intradigit somatotopic map with high-frequency (250 Hz) vibrotactile stimulation. Functional magnetic resonance imaging (fMRI) data were acquired while stimulation was applied to 3 phalanxes (distal [p1], intermediate [p2], and proximal [p3] phalanx) of 4 fingers (index, middle, ring, and little finger) for a total of 12 finger–phalanx combinations for a human. Inter-, intra-, and inter-/intradigit distances were calculated from peak activation coordinates in BA 3 for each combination. With regard to interdigit dimensions, the somatotopic coordinates proceeded in the lateral-to-medial direction for the index, middle, ring, and little fingers consecutively. This trend is comparable to that generated from low-frequency stimulation modalities (flutter stimulation). The somatotopic distances between fingers were greatest when p1 was compared across fingers. From an intradigit perspective, stimulation on p1, p2, and p3 yielded BA 3 peak coordinates aligned along the anterior-to-posterior and inferior-to-superior directions for all fingers. An inter-/intradigit map exhibited a radially propagating trend of distances calculated with respect to index p1 as a reference point; this provided an integrated view of inter- and intradigit somatotopies, which are traditionally discussed separately. We expect such an inter-/intradigit somatotopic map approach to contribute in generating a comprehensive somatotopic model of fingers.

Related Topics

    loading  Loading Related Articles