micro-RNA screening and prediction model construction for diagnosis of salt-sensitive essential hypertension

    loading  Checking for direct PDF access through Ovid


Commonly used tests for diagnosis of salt-sensitive hypertension (SSH) are complex and time-consuming, so new methods are required. Many studies have demonstrated roles for miRNAs in hypertension; however, the diagnostic value of miRNAs has yet to be determined for human SSH. In this study, we examined miRNA expression profiles by initial high-throughput miRNA sequencing of samples from patients with salt-sensitive and salt-resistant hypertension (SSH and SRH, respectively; n = 6, both groups), followed by validation by quantitative real-time polymerase chain reaction (qRT-PCR) in a larger cohort (n = 91). We also evaluated differences in baseline characteristics (e.g., age, sex, body mass index, consumption of specific foods) between the SSH and SRH groups. Of 36 miRNAs identified as differentially expressed between SSH and SRH groups by RNA-Seq, 8 were analyzed by qRT-PCR. There were significant differences in the expression levels of hsa-miR-361-5p and hsa-miR-362-5p between the 2 groups (P = .023 and.049, respectively). In addition, there were significant differences in sauce and poultry consumption between the 2 groups (P = .004 and.001, respectively). The areas under the curve (AUC) determined by receptor operating characteristic (ROC) analysis for hsa-miR-361–5p and all 8 miRNAs were 0.793 (95% CI, 0.698–0.888; sensitivity = 73.9%, specificity = 74.4%; P < .001) and 0.836 (95% CI, 0.749–0.922; sensitivity = 80.4%, specificity = 81.4%; P < .001), respectively, when sauce and poultry consumption were included in the models. Assay feasibility and economic considerations make hsa-miR-361-5p combined with the dietary factors the preferred markers for diagnosis of SSH.

Related Topics

    loading  Loading Related Articles