Urinary metalloproteinases and tissue inhibitors of metalloproteinases as potential early biomarkers for renal fibrosis in children with nephrotic syndrome

    loading  Checking for direct PDF access through Ovid

Abstract

In chronic glomerulopathies, renal fibrosis (RF) results from extracellular matrix remodeling processes regulated by matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP). We assessed urinary (u-) and serum (s-) MMP-1, -2, -9, TIMP-1, -2 concentrations and MMP-1, -2, -9/TIMP-1, -2 ratios in children with nephrotic syndrome. Steroid-dependent and steroid-resistant nephrotic patients (SDNS-Ps and SRNS-Ps, respectively) were compared with respect to measured parameters. The correlations of measured parameters with magnitude of proteinuria and histopathological diagnosis were determined.

The study comprised of 39 children with nephrotic syndrome and 20 healthy controls. Twenty-three patients had SDNS and 16 ones—SRNS. The concentrations MMPs and TIMPs were measured using enzyme-linked immunosorbent assay.

In nephrotic patients, higher u-MMP-1, -2, -9/creatinine ratios and u-TIMP-1, -2/creatinine ratios were observed as compared with controls. Nephrotic children were also characterized by lower MMP-1, -2, -9/TIMP-1 ratios. In SRNS-Ps, u-MMP-2/creatinine ratio and u-TIMP-1/creatinine ratio were higher as compared with SDNS-Ps. Magnitude of proteinuria correlated positively with u-MMP-2/creatinine ratio and negatively with u-MMP-2/TIMP-1. In minimal change disease (MCD) patients as compared with those with other glomerulopathies, there was higher u-MMP-2/TIMP-1 ratio. No significant differences in s-MMPs, s-TIMPs, and s-MMPs/TIMPs ratios between nephrotic patients and controls were observed.

Children with nephrotic syndrome are characterized by increased u-fibrotic biomarkers excretions. U-MMP-1, -2, -9 excretions and u-MMP-2/TIMP-1 ratio may become potential early biomarkers for RF. SRNS-Ps, those with heavier proteinuria and other than MCD glomerulopathies, seem to be more susceptible to early RF.

Related Topics

    loading  Loading Related Articles