Assessment of neonatal brain volume and growth at different postmenstrual ages by conventional MRI

    loading  Checking for direct PDF access through Ovid

Abstract

Data regarding neonatal brain volumes represent a basis for monitoring early brain development, and large sample of neonatal brain volume data has not been well described. This study was focused on neonatal brain volumes at different postmenstrual ages (PMA) and postnatal age (PNA).

A cohort of 415 neonates with PMA 30 to 43+4 weeks were recruited for the determination of brain volumes. Intracranial cavity (ICC), total brain tissue (TBT), and cerebrospinal fluid (CSF) were evaluated on the basis of T1-weighted sagittal plane magnetic resonance images. Brain magnetic resonance imaging was assessed using maturation scoring system and multiple linear regression analysis was conducted to forecast the effect factors of brain volumes.

TBT volume reached a peak growth at 39 to 40 weeks, ICC volume presented peak growth later at around 43 to 44 weeks, and CSF had a cliff fallen at 37 to 38 weeks PMA at scan. The maturation score increased along with PMA, and the TBT and CSF volumes were significantly different between higher and lower gestational age (GA) groups. The ICC and TBT volumes in higher GA group were larger than lower GA group. Most infants in higher GA group had higher TMS than those in lower GA group. Gender, PMA, PNA, and birth weight were predictors of TBT and ICC volumes.

Our results showed that premature volumes of ICC and TBT enlarged with the increasing PMA, while volumes of CSF decreased at 37 weeks. Premature earlier to leave the uterus can lead to brain mature retard although they had the same GA compared with those later birth neonates.

Related Topics

    loading  Loading Related Articles