Computerized detection of lung nodules through radiomics


    loading  Checking for direct PDF access through Ovid

Abstract

Purpose:Lung cancer is a major cause of cancer deaths, and the 5-year survival rate of stage IV lung cancer patients is only 2%. However, the 5-year survival rate of stage I lung cancer patients significantly increases to 50%. As such, spiral computed tomography (CT) scans are necessary to diagnose high-risk lung cancer patients in early stages. In this study, a computer-aided detection (CAD) system with radiomics was proposed. This system could automatically detect pulmonary nodules and reduce radiologists' workloads and human errors.Methods:In the proposed scheme, a nodular enhancement filter was used to segment nodule candidates and extract radiomic features. A synthetic minority over-sampling technique was also applied to balance the samples, and a random forest method was utilized to distinguish between real nodules and false positive detections. The radiomics approach quantified intratumor heterogeneity and multifrequency information, which are highly correlated with lung nodules.Results:The proposed method was used to evaluate 1004 CT cases from the well-known Lung Image Database Consortium, and 88.9% sensitivity with four false positive detections per CT scan was obtained by randomly selecting 502 cases for training and 502 other cases for testing.Conclusions:The proposed scheme yielded a high performance on the LIDC database. Therefore, the proposed scheme is possibly effective for various CT configurations used in routine diagnosis and lung cancer screening.

    loading  Loading Related Articles