7T ultra-high field body MR imaging with an 8-channel transmit/32-channel receive radiofrequency coil array

    loading  Checking for direct PDF access through Ovid


PurposeIn this work, a combined body coil array with eight transmit/receive (Tx/Rx) meander elements and with 24 receive-only (Rx) loops (8Tx/32Rx) was developed and evaluated in comparison with an 8-channel transmit/receive body array (8Tx/Rx) based on meander elements serving as the reference standard.MethodsSystematic evaluation of the RF array was performed on a body-sized phantom. Body imaging at 7T was performed in six volunteers in the body regions pelvis, abdomen, and heart. Coil characteristics such as signal-to-noise ratio, acceleration capability, g-factors, S-parameters, noise correlation, and B1+ maps were assessed. Safety was ensured by numerical simulations using a coil model validated by dosimetric field measurements.ResultsMeander elements and loops are intrinsically well decoupled with a maximum coupling value of −20.5 dB. Safe use of the 8Tx/32Rx array could be demonstrated. High gain in signal-to-noise ratio (33% in the subject's center) could be shown for the 8Tx/32Rx array compared to the 8Tx/Rx array. Improvement in acceleration capability in all investigations could be demonstrated. For example, the 8Tx/32Rx array provides lower g-factors in the right–left and anterior–posterior directions with R = 3 undersampling as compared to the 8Tx/Rx array using R = 2. Both arrays are very similar regarding their RF transmit performance. Excellent image quality in the investigated body regions could be achieved with the 8Tx/32Rx array.ConclusionIn this work, we show that a combination of eight meander elements and 24 loop receive elements is possible without impeding transmit performance. Improved SNR and g-factor performance compared to an RF array without these loops is demonstrated. Body MRI at 7T with the 8Tx/32Rx array could be accomplished in the heart, abdomen, and pelvis with excellent image quality.

    loading  Loading Related Articles