Complex networks reveal early MRI markers of Parkinson's disease

    loading  Checking for direct PDF access through Ovid


Parkinson's disease (PD) is the most common neurological disorder, after Alzheimer's disease, and is characterized by a long prodromal stage lasting up to 20 years. As age is a prominent factor risk for the disease, next years will see a continuous increment of PD patients, making urgent the development of efficient strategies for early diagnosis and treatments. We propose here a novel approach based on complex networks for accurate early diagnoses using magnetic resonance imaging (MRI) data; our approach also allows us to investigate which are the brain regions mostly affected by the disease. First of all, we define a network model of brain regions and associate to each region proper connectivity measures. Thus, each brain is represented through a feature vector encoding the local relationships brain regions interweave. Then, Random Forests are used for feature selection and learning a compact representation. Finally, we use a Support Vector Machine to combine complex network features with clinical scores typical of PD prodromal phase and provide a diagnostic index. We evaluated the classification performance on the Parkinson's Progression Markers Initiative (PPMI) database, including a mixed cohort of 169 normal controls (NC) and 374 PD patients. Our model compares favorably with existing state-of-the-art MRI approaches. Besides, as a difference with previous approaches, our methodology ranks the brain regions according to disease effects without any a priori assumption.

Related Topics

    loading  Loading Related Articles