M1 and M2 macrophages’ clinicopathological significance in cutaneous melanoma

    loading  Checking for direct PDF access through Ovid


Skin malignant melanoma (MM) is an aggressive cancer with an increasing incidence with limited therapies in advanced stages. Tumor-associated macrophages (TAMs) are the major immune constituent of the MM microenvironment and contribute toward its prognosis. TAMs’ characterization and localization in human cancer is important to understand cancer progression and to identify molecular personalized therapies. M2 TAMs in stage I–II MMs are associated with worse prognostic parameters. A comprehensive M1-macrophage and M2-macrophage intratumoral localization and quantification in all stages of skin MMs is documented here with its clinical significance. To highlight immune pathways and possible early indicators of MM progression, we evaluated the number of M1 and M2 TAMs and intratumoral distribution in a large series of skin MMs. CD68 double immunostaining with MRP8–14 or inducible nitric oxide synthase (M1 macrophages) and with CD163 or CD204 (M2 macrophages) was performed in 94 stage I–IV skin MMs with a long duration of follow-up. The accumulation and distribution of M1 and M2 TAMs in intratumoral nests, stroma, and at the invasive front was correlated with clinicopathological variables. Since the early stage of MMs, M1 intratumoral macrophages were fewer than the M2 population; their recruitment was rapidly and progressively overwhelmed by an increase in M2 TAMs during MM progression. Independent of their intratumoral distribution, the accumulation of both M1 and M2 TAMs is associated with poor prognostic indicators and patients’ survival. M1-recruited macrophages shift to the M2 phenotype early in MM development, possibly induced by high inducible nitric oxide synthase intratumoral increase peculiarly occurring since the initial MM stages. M2-recruited TAMs overwhelm M1 accumulation in all stages of MM progression, thus favoring neoplastic growth and dissemination. Independent of their intratumoral distribution, the prevalent accumulation of M2 TAMs in MM is statistically confirmed to be a poor indicator of patients’ outcome and a potential target of immune therapies.

    loading  Loading Related Articles