Dithiothreitol improves recovery from in vitro diaphragm fatigue

    loading  Checking for direct PDF access through Ovid

Abstract

ABSTRACT

There is increasing evidence that reactive oxygen species are produced during strenuous skeletal muscle work and that they contribute to the development of muscle fatigue. Although the precise cellular mechanisms underlying such a phenomenon remain obscure, it has been hypothesized that endogenously produced reactive oxygen species may down-regulate force production during fatigue by oxidizing critical sulfhydryl groups on important contractile proteins. To test this hypothesis, we fatigued rat diaphragm strips in vitro for 4 min at 20 Hz stimulation and a duty cycle of 0.33. Following fatigue, the tissue baths were drained and randomly replaced with either physiologic saline or physiologic saline containing the disulfide reducing agent, dithiothreitol (DTT) at varying doses (0.1-5.0 mM). Force-frequency characteristics were then measured over a 90-min recovery period. At the 0.5 and 1.0 mM doses, DTT treatment was associated with significantly greater force production in the recovery period. DTT's effects were observed at most frequencies tested, but appeared more prominent at the higher frequencies. The beneficial effects of DTT were not evident at the 0.1 or 5.0 mM doses and appeared to be specific for fatigued muscle. These recovery-enhancing effects of a potent disulfide reducing agent suggest that important contractile proteins may be oxidized during fatigue; such changes may be readily reversible.

Related Topics

    loading  Loading Related Articles