Neuromuscular Adaptations to Work-matched Maximal Eccentric versus Concentric Training

    loading  Checking for direct PDF access through Ovid



This study aimed to examine neuromuscular adaptations after maximal eccentric versus concentric training matched for total work.


Twelve males conducted single-joint isokinetic (180°·s−1) maximal eccentric contractions of the knee extensors in one leg (ECC-leg) and concentric in the other (CON-leg), 6 sets per session (3–5 sets in the initial 1–3 sessions), 2 sessions per week for 10 wk. The preceding leg performed 10 repetitions per set. The following leg conducted the equivalent volume of work. In addition to peak torque during training, agonist EMG and MRI-based anatomical cross-sectional area (ACSA) and transverse relaxation time (T2) at midthigh as reflective of neural drive, hypertrophy, and edema, respectively, were assessed weekly throughout the training period and pre- and posttraining. Whole muscle volume was also measured pre- and posttraining.


Torque and EMG (in trained contraction conditions) significantly increased in both legs after week 1 (W1) and week 4 (W4), respectively, with a greater degree for ECC-leg (torque +76%, EMG +73%: posttraining) than CON-leg (+28%, +20%). ACSA significantly increased after W4 in ECC-leg only (+4%: posttraining), without T2 changes throughout. Muscle volume also increased in ECC-leg only (+4%). Multiple regression analysis revealed that changes (%Δ) in EMG solely explained 53%–80% and 30%–56% of the total variance in %Δtorque through training in ECC-leg and CON-leg, respectively, with small contributions (+13%–18%) of %ΔACSA for both legs.


Eccentric training induces greater neuromuscular changes than concentric training even when matched for total work, whereas most of the strength gains during 10-wk training are attributable to the increased neural drive.

Related Topics

    loading  Loading Related Articles