Cellobiose Catabolism in the Haloalkaliphilic Hydrolytic Bacterium Alkaliflexus imshenetskii

    loading  Checking for direct PDF access through Ovid


Cellobiose metabolism was studied in Alkaliflexus imshenetskii, a haloalkaliphilic hydrolytic bacterium capable of utilizing certain polymers of plant origin, as well as mono- and disaccharides. The major products of cellobiose fermentation by the bacterium were succinate and acetate, and formate was a minor product. Cellobiose could be split into glucose molecules by both β-glucosidase (hydrolytic pathway) and phosphorylase (phosphorolytic pathway); the activity of the former enzyme was two orders of magnitude higher (3600 nmol/(min mg) versus 36 nmol/(min mg)). In cell extracts of the bacterium, high activities of the Embden-Meyerhof-Parnas pathway enzymes—hexokinase, glucose-phosphate isomerase, and phosphofructokinase—were revealed, as well as the activities of glucose-6-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and key enzymes of the Entner-Doudoroff pathway—6-phospho-gluconate dehydratase and 2-keto-3-deoxy-6-phospho-gluconate aldolase. Neither the activity of the key enzyme of the hexose-mono-phosphate pathway, 6-phospho-gluconate dehydrogenase, nor the activities of the key enzymes of the modified Entner-Doudoroff pathway, glucose dehydrogenase and 2-keto-3-deoxy-gluconate kinase, were revealed.

Related Topics

    loading  Loading Related Articles