A Kinetic Study of Gamma Interferon Production in Herpes Simplex Virus-1 DNA Prime-Protein Boost Regimen Comparing to DNA or Subunit Vaccination

    loading  Checking for direct PDF access through Ovid

Abstract

The vast majority of the world's population is infected with Herpes simplex virus (HSV). Although antiviral therapy can reduce the incidence of reactivation and asymptomatic viral shedding and limits morbidity and mortality from active disease, it cannot cure infection. Therefore, the development of an effective vaccine is an important global health priority. In this study, the induction of IFN-γ production was compared in different herpes simplex virus 1 (HSV-1) vaccines. Glycoprotein D (gD1) as a major immunogenic HSV-1 glycoprotein was chosen to our study. Balb/c mice were administered with DNA vaccine encoding gD1, subunit glycoprotein vaccine including insect cells infected by a gD1 recombinant Baculovirus, prime DNA vaccine boosted by subunit glycoprotein vaccine, inactivated KOS strain as a positive control, pcDNA3 plasmid and Sf9 cells as negative controls. Evaluation tests showed that the amount of IFN-γ mRNA at 8, 16 and 32 hours after restimulation sharply decreased whereas, the IFN-γ protein level is significantly increased. Our results revealed that at 14 days after immunization IFN-γ secretion of stimulated cells in all of the vaccinated groups dramatically raised rather than secreted IFN-γ levels in mice that were analyzed at 7 days after vaccination. In comparison to other groups; Prime-Boost immunization dramatically caused vigorous and prompt IFN-γ production at 7 days after immunization and 8 hours after restimulation.

Related Topics

    loading  Loading Related Articles