Genomic Subtraction Recovers Rye-Specific DNA Elements Enriched in the Rye Genome

    loading  Checking for direct PDF access through Ovid


Repetitive DNA sequence families have been identified in methylated relic DNAs of rye. This study sought to isolate rye genome-specific repetitive elements regardless of the level of methylation, using a genomic subtraction method. The total genomic DNAs of rye-chromosome-addition-wheat lines were cleaved to short fragments with a methylation-insensitive 4-bp cutter, MboI, and then common DNA sequences between rye and wheat were subtracted by annealing with excess wheat genomic DNA. Four classes of rye-specific repetitive elements were successfully isolated from both the methylated and non-methylated regions of the genome. Annealing of the DNA mixture at a ratio of the enzyme-restricted fragments:the sonicated fragments (1:3–1:5) was key to this success. Two classes of repetitive elements identified here belong to representative repetitive families: the tandem 350-family and the dispersed R173 family. Southern blot hybridization patterns of the two repetitive elements showed distinct fragments in methylation-insensitive EcoO109I digests, but continuous smear signals in the methylation-sensitive PstI and SalI digests, indicating that both of the known families are contained in the methylated regions. The subtelomeric tandem 350-family is organized by multimers of a 380-bp-core unit defined by the restriction enzyme EcoO109I. The other two repetitive element classes had new DNA sequences (444, 89 bp) and different core-unit sizes, as defined by methylation-sensitive enzymes. The EcoO109I recognition sites consisting of PyCCNGGPu-multi sequences existed with high frequency in the four types of rye repetitive families and might be a useful tool for studying the genomic organization and differentiation of this species.

Related Topics

    loading  Loading Related Articles