Endocytosis controls glutamate-induced nuclear accumulation of ERK

    loading  Checking for direct PDF access through Ovid

Abstract

ABSTRACT

Nuclear translocation of activated extracellular signal-regulated kinases (ERK) in neurons is critical for gene regulations underlying long-term neuronal adaptation and memory formation. However, it is unknown how activated ERK travel from the post-synaptic elements where their activation occurs, to the nucleus where they translocate to exert their transcriptional roles. In cultured neurons, we identified endocytosis as a prime event in glutamate-induced nuclear trafficking of ERK2. We show that glutamate triggers a rapid recruitment of ERK2 to a protein complex comprising markers of the clathrin-dependent endocytotic and AMPA/glutamate receptor subtype. Inhibition of endocytosis results in a neuritic withholding of activated ERK2 without modification of ERK2 activity. As a consequence, endocytosis blockade alters ERK-dependent nuclear events, such as mitogen and stressed-activated kinase-1 (MSK-1) activation, histone H3 phosphorylation and gene regulations. Our data provide the first evidence that the endocytic pathway controls ERK nuclear translocation and ERK-dependent gene regulations induced by glutamate.

Related Topics

    loading  Loading Related Articles