Identification of quantitative trait loci controlling winter hardiness in an annual × perennial ryegrass interspecific hybrid population

    loading  Checking for direct PDF access through Ovid


Winter hardiness is a quantitative trait and the lack of it limits geographic distribution of ryegrass. Improving winter hardiness is an important breeding goal in ryegrass breeding programs. An understanding of the genetic basis for the component traits of winter hardiness would allow more efficient selection. A three-generation interspecific population of an annual × perennial ryegrass consisting of 152 progenies was used to map quantitative trait loci (QTL) that control winter hardiness-related traits including fall growth (FG), freezing tolerance (FT), and winter survival (WS) over 2 years. A total of 39 QTL were identified for the three traits from both the female parental (MFA) and the male parental (MFB) maps, of which 13 were for FG, 6 for FT, and 20 for WS. The proportion of phenotypic variation explained by individual QTL ranged from 10.4 to 22.1%. Both FG and FT were positively correlated with WS. Common QTL were detected between FG, FT, and WS. The QTL associated with WS on linkage groups (LGs) 4 and 5, and the QTL for FT on LG 5 were consistently identified over years and maps. These consistent QTL might serve as potential tools for marker-assisted selection to improve ryegrass winter hardiness.

Related Topics

    loading  Loading Related Articles